Это звучит как научная фантастика, чтобы сказать, что есть невидимые, необнаружимые вещи вокруг нас, и что у него есть жуткое название темной материи. Но есть много доказательств того, что этот материал очень реален. Так что же такое темная материя? Откуда мы знаем, что оно там? И как ученые его ищут?

Все, что мы видим вокруг – от растений до планет, от камней до звезд, от людей до скопления галактик Персея – состоит из материи. Но все это составляет лишь около 15 процентов от общего количества материи во Вселенной. Подавляющее большинство, то есть оставшиеся 85 процентов, не учитываются – и мы называем это темной материей.

Содержание

Об антивеществе

Что такое тёмная материя о которой постоянно говорят в фильмах

Так называют полную противоположность обычной материи. Она состоит из частиц, а антивещество — из античастиц. Частица и ее античастица обладают одинаковой массой, но их отдельные характеристики будут разными. Например, магнитный момент, заряд, спин, число лептонов и барионов будут обладать противоположными значениями.

Существование антиматерии в современном понимании предсказывали еще в 1928 году. Предположения принадлежали Полу Дираку. Согласно выдвинутой им теории, возможно существование частиц с равной массой электрона, но противоположным зарядом равного значения. В 1932 Карл Д.Андерсон смог доказать данную гипотезу. Он открыл существование позитрона, это двойник электрона или антиэлектрон, часть антиматерии. Ученый совершил данное открытие, когда изучал космические лучи.

Так была открыта первая античастица, и это стало прорывом для физики.Если отталкиваться от стандартной модели, то у каждой частицы обычной материи есть аналог, и он представлен античастицей. Это еще не все, свой аналог есть и у кварка. К примеру, для нейтрона, протона и электрона таким аналогом будут антинейтрон, антипротон и позитрон соответственно. Существуют простейшие анти-атомы, самый простой из них — антиводород, в его состав входят позитрон и антипротон. Ученые пытаются создать анти-нуклеусы, которые будут тяжелее, чем антигелий, но у них до сих пор не получается этого сделать. Несмотря на то, что на данный момент практически не получается, если исходить из законов физики, это возможно.

В теории взаимодействие антивещества происходит в четырех видах: электромагнитное, гравитационное, сильное ядерное и слабое. Антиматерия тоже способна искривлять время-пространство так же, как это делает обычная материя.

О темной материи

Что такое тёмная материя о которой постоянно говорят в фильмах

По факту обнаружить темную материю, как это вышло с антивеществом, не удалось. Однако, открыты довольно убедительные доказательства ее существования. Длительные наблюдения позволили ученым сделать выводы, что должно существовать больше темного вещества, чем есть в нашей вселенной.

Как вспомогательное доказательство того, что темная материя есть, ученые используют спиральные галактики. С какой скоростью будет вращаться такая галактика, зависит от ее массы, они увеличиваются прямо пропорционально. Большинство спиральных галактик, включая наш Млечный путь, вращаются быстрее, чем предполагалось изначально. Выходит, что их масса должны быть выше, чем та, что специалисты наблюдают. Разница представлена отсутствующей или ненаблюдаемой материей, теоретически ее можно отнести к темной материи.

В соответствии с теми теориями, от которых отталкивается современная наука, темная материя может взаимодействовать только через слабые и гравитационные взаимодействия. Гравитационное влияние однозначно существует, оно заметно. Однако, темную материю, нельзя увидеть, и поэтому она труднодоступная, ее очень трудно обнаружить. Все было бы по-другому, если бы она могла производить электромагнитные и сильные взаимодействия.

В чем разница?

Что такое тёмная материя о которой постоянно говорят в фильмах

Антивещество не только обнаружено, но и может синтезироваться по воле человека, это происходит за счет сталкивания заряженных частиц высоких энергий. Более того, человечеству удалось создать искусственным путем антигелий и антиводород. Темная материя не наблюдаемая. Несмотря на то, что есть убедительные доказательства ее существования, на данный момент она существует только в теории.

Если и другие ключевые отличия темной материи и антиматерии. Что касается антивещества, которое образовалось в таком же количестве, что и обычное вещество, после большого взрыва, сегодня его практически не наблюдаем. Никто не знает, куда оно делось, но во вселенной его очень мало. Темной материи намного больше, чем обычной, но на данный момент мы знаем это только по подсчетам.

Так что такое темная материя?

Во-первых, и это, пожалуй, самое удивительное, исследователи по-прежнему не уверены в том, что именно представляет собой темная материя.

Изначально некоторые ученые предполагали, что недостающая масса во Вселенной состоит из маленьких слабых звезд и черных дыр, хотя детальные наблюдения не выявили достаточно таких объектов, чтобы объяснить влияние темной материи, об этом и писал Дон Линкольн.

В настоящее время главным претендентом на роль темной материи является гипотетическая частица, называемая слабовзаимодействующей массивной частицей, или вимп (англ. WIMP), которая вела бы себя как нейтрон, но была бы в 10-100 раз тяжелее протона, как писал Линкольн. Впрочем, эта гипотеза привела только к большему количеству вопросов.

Кто открыл темную материю?

Первый намек на ее существование – представления Джордано Бруно. Он интуитивно полагал, что есть «бесчисленные и бесконечные» космические тела. Речь шла об объектах, которые ускользнули из универсальной системы Коперника. Простые звезды, которые не видны нам. Что касается планет, он считал, что их не видно, так как очень слабо светятся в отраженных лучах собственных светил.

92 года назад британским физиком Джеймсом Джинсом и голландским астроном Якобусом Катейном было обнаружено, что значительная часть галактического вещества не видна. Именно тогда впервые прозвучал данный термин.

Что такое тёмная материя о которой постоянно говорят в фильмах

А вес темной материи определили астрофизики – сорок или более гигаэлектронвольт (ГэВ).

Можно ли мы обнаружить темную материю?

Если темная материя состоит из вимпов, они должны быть повсюду вокруг нас, невидимые и едва различимые. Так почему же их до сих пор не нашли? Хотя они не будут сильно взаимодействовать с обычной материей, всегда есть небольшая вероятность того, что частица темной материи может столкнуться с нормальной частицей, такой как протон или электрон, когда она путешествует в пространстве.
Что такое тёмная материя о которой постоянно говорят в фильмах

Таким образом, исследователи проводили эксперимент за экспериментом, чтобы изучить огромное количество обычных частиц глубоко под землей, где они защищены от мешающего излучения, способное имитировать столкновение частиц темной материи.

В чем же проблема? После десятилетий поисков ни один из этих детекторов не сделал достоверного открытия.  Ранее в этом году китайский эксперимент PandaX сообщил о том, что они так и не смогли обнаружить вимпы. Вполне вероятно, что частицы темной материи намного меньше вимпов, или не обладают свойствами, которые облегчили бы их изучение, сказал физик Хай-Бо Ю из Калифорнийского университета в Риверсайде.

2. Расширяющаяся Вселенная

Имеется целый ряд фактов, говорящих о свойствах Вселенной сегодня и в относительно недалеком прошлом.

Вселенная в целом однородна: все области во Вселенной выглядят одинаково. Разумеется, это не относится к небольшим областям: есть области, где много звезд — это галактики; есть области, где много галактик, — это скопления галактик; есть и области, где галактик мало, — это гигантские пустоты. Но области размером 300 миллионов световых лет и больше выглядят все одинаково. Об этом однозначно свидетельствуют астрономические наблюдения, в результате которых составлена «карта» Вселенной до расстояний около 10 млрд световых лет от нас 1 . Нужно сказать, что эта «карта» служит источником ценнейшей информации о современной Вселенной, поскольку она позволяет на количественном уровне определить, как именно распределено вещество во Вселенной.

На рис. 2 показан фрагмент этой карты 2 , охватывающий относительно небольшой объем Вселенной. Видно, что во Вселенной имеются структуры довольно большого размера, но в целом галактики «разбросаны» в ней однородно.

Вселенная расширяется: галактики удаляются друг от друга. Пространство растягивается во все стороны, и чем дальше от нас находится та или иная галактика, тем быстрее она удаляется от нас. Сегодня темп этого расширения невелик: все расстояния увеличатся вдвое 3 примерно за 15 млрд лет, однако раньше темп расширения был гораздо больше. Плотность вещества во Вселенной убывает с течением времени, и в будущем Вселенная будет всё более и более разреженной. Наоборот, раньше Вселенная была гораздо более плотной, чем сейчас. О расширении Вселенной прямо свидетельствует «покраснение» света, испущенного удаленными галактиками или яркими звездами: из-за общего растяжения пространства длина волны света увеличивается за то время, пока он летит к нам. Именно это явление было установлено Э. Хабблом в 1927 году и послужило наблюдательным доказательством расширения Вселенной, предсказанного за три года до этого Александром Фридманом.

Замечательно, что современные наблюдательные данные позволяют измерить не только темп расширения Вселенной в настоящее время, но проследить за темпом её расширения в прошлом. О результатах этих измерений и вытекающих из них далеко идущих выводах мы еще будем говорить. Здесь же скажем о следующем: сам факт расширения Вселенной, вместе с теорией гравитации — общей теорией относительности — свидетельствует о том, что в прошлом Вселенная была чрезвычайно плотной и чрезвычайно быстро расширялась. Если проследить эволюцию Вселенной назад в прошлое, используя известные законы физики, то мы придем к выводу, что эта эволюция началась с момента Большого Взрыва; в этот момент вещество во Вселенной было настолько плотным, а гравитационное взаимодействие настолько сильным, что известные законы физики были неприменимы. С тех пор прошло 14 млрд лет, это — возраст современной Вселенной.

Вселенная «теплая»: в ней имеется электромагнитное излучение, характеризуемое температурой Т = 2,725 градусов Кельвина (реликтовые фотоны, сегодня представляющие собой радиоволны). Разумеется, эта температура сегодня невелика (ниже температуры жидкого гелия), однако это было далеко не так в прошлом. В процессе расширения Вселенная остывает, так что на ранних стадиях её эволюции температура, как и плотность вещества, была гораздо выше, чем сегодня. В прошлом Вселенная была горячей, плотной и быстро расширяющейся.

3 Разумеется, это не относится к расстоянию от Земли до Солнца или расстоянию между звездами в Галактике: Земля удерживается вблизи Солнца силами гравитационного притяжения, и расстояние от нее до Солнца не изменяется из-за расширения Вселенной.

3. Вселенная в прошлом

Обсудим два этапа эволюции Вселенной, о которых сегодня имеются надежные наблюдательные данные. Один из них, относительно недавний — это этап перехода вещества во Вселенной из состояния плазмы в газообразное состояние. Это произошло при температуре 3000 градусов, а возраст Вселенной к тому моменту составлял 300 тыс. лет (совсем немного по сравнению с современными 14 млрд лет). До этого электроны и протоны двигались отдельно друг от друга, вещество представляло из себя плазму. При температуре 3000 градусов произошло объединение электронов и протонов в атомы водорода, и Вселенная оказалась заполненной этим газом. Важно, что плазма непрозрачна для электромагнитного излучения; фотоны всё время излучаются, поглощаются, рассеиваются на электронах плазмы. Газ, наоборот, прозрачен. Значит, пришедшее к нам электромагнитное излучение с температурой 2,7 градуса свободно путешествовало во Вселенной с момента перехода плазма—газ, остыв (покраснев) с тех пор в 1100 раз из-за расширения Вселенной. Это реликтовое электромагнитное излучение сохранило в себе информацию о состоянии Вселенной в момент перехода плазма—газ; с его помощью мы имеем фотоснимок (буквально!) Вселенной в возрасте 300 тыс. лет, когда её температура составляла 3000 градусов.

Измеряя температуру этого реликтового электромагнитного излучения, пришедшего к нам с разных направлений на небе, мы узнаём, какие области были теплее или холоднее (а значит, плотнее или разреженнее), чем в среднем по Вселенной, а главное — насколько они были теплее или холоднее. Результат этих измерений состоит в том, что Вселенная в возрасте 300 тыс. лет была гораздо более однородной, чем сегодня: вариации температуры и плотности составляли тогда менее 10–4 (0,01%) от средних значений. Тем не менее, эти вариации существовали: с разных направлений электромагнитное излучение приходит с несколько различной температурой. Это показано на рис. 3, где изображено распределение температуры по небесной сфере (фотоснимок ранней Вселенной) за вычетом средней температуры 2,725 градусов Кельвина; более холодные области показаны синим, более теплые — красным цветом 4 .

Во-первых, он позволил установить, что наше трехмерное пространство с хорошей степенью точности евклидово: сумма углов треугольника в нем равна 180 градусов даже для треугольников со сторонами, длины которых сравнимы с размером видимой части Вселенной, т. е. сравнимы с 14 млрд световых лет. Вообще говоря, общая теория относительности допускает, что пространство может быть не евклидовым, а искривленным; наблюдательные же данные свидетельствуют, что это не так (по крайней мере для нашей области Вселенной). Способ измерения «суммы углов треугольника» на космологических масштабах расстояний состоит в следующем. Можно надежно вычислить характерный пространственный размер областей, где температура отличается от средней: на момент перехода плазма—газ этот размер определяется возрастом Вселенной, т. е. пропорционален 300 тыс. световых лет. Наблюдаемый угловой размер этих областей зависит от геометрии трехмерного пространства, что и дает возможность установить, что эта геометрия — евклидова.

В случае евклидовой геометрии трехмерного пространства общая теория относительности однозначно связывает темп расширения Вселенной с суммарной плотностью всех форм энергии, так же как в ньютоновской теории тяготения скорость обращения Земли вокруг Солнца определяется массой Солнца. Измеренный темп расширения соответствует полной плотности энергии в современной Вселенной

В терминах плотности массы (поскольку энергия связана с массой соотношением Е = mс2) это число составляет

Если бы энергия во Вселенной целиком определялась энергией покоя обычного вещества, то в среднем во Вселенной было бы 5 протонов в кубическом метре. Мы увидим, однако, что обычного вещества во Вселенной

можно установить, какова была величина (амплитуда) неоднородностей температуры и плотности в ранней Вселенной — она составляла 10–4–10–5 от средних значений. Именно из этих неоднородностей плотности возникли галактики и скопления галактик: области с более высокой плотностью притягивали к себе окружающее вещество за счет гравитационных сил, становились еще более плотными и в конечном итоге образовывали галактики.

Поскольку начальные неоднородности плотности известны, процесс образования галактик можно рассчитать и результат сравнить с наблюдаемым распределением галактик во Вселенной. Этот расчет согласуется с наблюдениями, только если предположить, что помимо обычного вещества во Вселенной имеется другой тип вещества — темная материя, вклад которой в полную плотность энергии сегодня составляет около 25%.

Другой этап эволюции Вселенной соответствует еще более ранним временам, от 1 до 200 секунд (!) с момента Большого Взрыва, когда температура Вселенной достигала миллиардов градусов. В это время во Вселенной происходили термоядерные реакции, аналогичные реакциям, протекающим в центре Солнца или в термоядерной бомбе. В результате этих реакций часть протонов связалась с нейтронами и образовала легкие ядра — ядра гелия, дейтерия и лития-7. Количество образовавшихся легких ядер можно рассчитать, при этом единственным неизвестным параметром является плотность числа протонов во Вселенной (последняя, разумеется, уменьшается за счет расширения Вселенной, но её значения в разные времена простым образом связаны между собой).

Сравнение этого расчета с наблюдаемым количеством легких элементов во Вселенной приведено на рис. 4: линии представляют собой результаты теоретического расчета в зависимости от единственного параметра — плотности обычного вещества (барионов), а прямоугольники — наблюдательные данные. Замечательно, что имеется согласие для всех трех легких ядер (гелия-4, дейтерия и лития-7); согласие есть и с данными по реликтовому излучению (показаны вертикальной полосой на рис. 4, обозначенной СМВ — Cosmic Microwave Background). Это согласие свидетельствует о том, что общая теория относительности и известные законы ядерной физики правильно описывают Вселенную в возрасте 1–200 секунд, когда вещество в ней имело температуру миллиард градусов и выше. Для нас важно, что все эти данные приводят к выводу о том, что плотность массы обычного вещества в современной Вселенной составляет

т. е. обычное вещество вкладывает всего 5% в полную плотность энергии во Вселенной.

4. Баланс энергий в современной Вселенной

Итак, доля обычного вещества (протонов, атомных ядер, электронов) в суммарной энергии в современной Вселенной составляет 5 всего 5%. Помимо обычного вещества во Вселенной имеются и реликтовые нейтрино — около 300 нейтрино всех типов в кубическом сантиметре. Их вклад в полную энергию (массу) во Вселенной невелик, поскольку массы нейтрино малы, и составляет заведомо не более 3%. Оставшиеся 90–95% полной энергии во Вселенной — «неизвестно что».

5 При этом вещества в звездах ещё в 10 раз меньше; обычное вещество находится в основном в облаках газа.

5. Темная материя

Темная материя сродни обычному веществу в том смысле, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.

Помимо космологических данных, в пользу существования темной материи служат измерения гравитационного поля в скоплениях галактик и в галактиках. Имеется несколько способов измерения гравитационного поля в скоплениях галактик, один из которых — гравитационное линзирование, проиллюстрированное на рис. 6.

Гравитационное поле скопления искривляет лучи света, испущенные галактикой, находящейся за скоплением, т. е. гравитационное поле действует как линза. При этом иногда появляются несколько образов этой удаленной галактики; на левой половине рис. 6 они имеют голубой цвет. Искривление света зависит от распределения массы в скоплении, независимо от того, какие частицы эту массу создают. Восстановленное таким образом распределение массы показано на правой половине рис. 6 голубым цветом; видно, что оно сильно отличается от распределения светящегося вещества. Измеренные подобным образом массы скоплений галактик согласуются с тем, что темная материя вкладывает около 25% в полную плотность энергии во Вселенной. Напомним, что это же число получается из сравнения теории образования структур (галактик, скоплений) с наблюдениями.

Темная материя имеется и в галактиках. Это опять-таки следует из измерений гравитационного поля, теперь уже в галактиках и их окрестностях. Чем сильнее гравитационное поле, тем быстрее вращаются вокруг галактики звезды и облака газа, так что измерения скоростей вращения в зависимости от расстояния до центра галактики позволяют восстановить распределение массы в ней. Это проиллюстрировано на рис. 7: по мере удаления от центра галактики скорости обращения не уменьшаются, что говорит о том, что в галактике, в том числе вдалеке от её светящейся части, имеется несветящаяся, темная материя. В нашей Галактике в окрестности Солнца масса темной материи примерно равна массе обычного вещества.

Что представляют из себя частицы темной материи? Ясно, что эти частицы не должны распадаться на другие, более легкие частицы, иначе бы они распались за время существования Вселенной. Сам этот факт свидетельствует о том, что в природе действует новый, не открытый пока закон сохранения, запрещающий этим частицам распадаться. Аналогия здесь с законом сохранения электрического заряда: электрон — это легчайшая частица с электрическим зарядом, и именно поэтому он не распадается на более легкие частицы (например, нейтрино и фотоны). Далее, частицы темной материи чрезвычайно слабо взаимодействуют с нашим веществом, иначе они были бы уже обнаружены в земных экспериментах. Дальше начинается область гипотез. Наиболее правдоподобной (но далеко не единственной!) представляется гипотеза о том, что частицы темной материи в 100–1000 раз тяжелее протона, и что их взаимодействие с обычным веществом по интенсивности сравнимо с взаимодействием нейтрино. Именно в рамках этой гипотезы современная плотность темной материи находит простое объяснение: частицы темной материи интенсивно рождались и аннигилировали в очень ранней Вселенной при сверхвысоких температурах (порядка 1015 градусов), и часть их дожила до наших дней. При указанных параметрах этих частиц их современное количество во Вселенной получается как раз такое, какое нужно.

Можно ли ожидать открытия частиц темной материи в недалеком будущем в земных условиях? Поскольку мы сегодня не знаем природу этих частиц, ответить на этот вопрос вполне однозначно нельзя. Тем не менее, перспектива представляется весьма оптимистической.

Имеется несколько путей поиска частиц темной материи. Один из них связан с экспериментами на будущих ускорителях высокой энергии — коллайдерах. Если частицы темной материи действительно тяжелее протона в 100–1000 раз, то они будут рождаться в столкновениях обычных частиц, разогнанных на коллайдерах до высоких энергий (энергий, достигнутых на существующих коллайдерах, для этого не хватает). Ближайшие перспективы здесь связаны со строящимся в международном центре ЦЕРН под Женевой Большим адронным коллайдером (LHC), на котором будут получены встречные пучки протонов с энергией 7x7 Тераэлектронвольт. Нужно сказать, что согласно популярным сегодня гипотезам, частицы темной материи — это лишь один представитель нового семейства элементарных частиц, так что наряду с открытием частиц темной материи можно надеяться на обнаружение на ускорителях целого класса новых частиц и новых взаимодействий. Космология подсказывает, что известными сегодня «кирпичиками» мир элементарных частиц далеко не исчерпывается!

Другой путь состоит в регистрации частиц темной материи, которые летают вокруг нас. Их отнюдь не мало: при массе, равной 1000 масс протона, этих частиц здесь и сейчас должно быть 1000 штук в кубическом метре. Проблема в том, что они крайне слабо взаимодействуют с обычными частицами, вещество для них прозрачно. Тем не менее, частицы темной материи изредка сталкиваются с атомными ядрами, и эти столкновения можно надеяться зарегистрировать. Поиск в этом направлении

Наконец, еще один путь связан с регистрацией продуктов аннигиляции частиц темной материи между собой. Эти частицы должны скапливаться в центре Земли и в центре Солнца (вещество для них практически прозрачно, и они способны проваливаться внутрь Земли или Солнца). Там они аннигилируют друг с другом, и при этом образуются другие частицы, в том числе нейтрино. Эти нейтрино свободно проходят сквозь толщу Земли или Солнца, и могут быть зарегистрированы специальными установками — нейтринными телескопами. Один из таких нейтринных телескопов расположен в глубине озера Байкал , другой (AMANDA) — глубоко во льду на Южном полюсе.

испытать взаимодействие в воде, в результате чего образуется заряженная частица (мюон), свет от которой и регистрируется. Поскольку взаимодействие нейтрино с веществом очень слабое, вероятность такого события мала, и требуются детекторы очень большого объема. Сейчас на Южном полюсе началось сооружение детектора объемом 1 кубический километр.

Имеются и другие подходы к поиску частиц темной материи, например, поиск продуктов их аннигиляции в центральной области нашей Галактики. Какой из всех этих путей первым приведет к успеху, покажет время, но в любом случае открытие этих новых частиц и изучение их свойств станет важнейшим научным достижением. Эти частицы расскажут нам о свойствах Вселенной через 10–9 с (одна миллиардная секунды!) после Большого Взрыва, когда температура Вселенной составляла 1015 градусов, и частицы темной материи интенсивно взаимодействовали с космической плазмой.

6. Темная энергия

Темная энергия — гораздо более странная субстанция, чем темная материя. Начать с того, что она не собирается в сгустки, а равномерно «разлита» во Вселенной. В галактиках и скоплениях галактик её столько же, сколько вне их. Самое необычное то, что темная энергия в определенном смысле испытывает антигравитацию. Мы уже говорили, что современными астрономическими методами можно не только измерить нынешний темп расширения Вселенной, но и определить, как он изменялся со временем. Так вот, астрономические наблюдения 6 свидетельствуют о том, что сегодня (и в недалеком прошлом) Вселенная расширяется с ускорением: темп расширения растет со временем. В этом смысле и можно говорить об антигравитации: обычное гравитационное притяжение замедляло бы разбегание галактик, а в нашей Вселенной, получается, всё наоборот.

Такая картина, вообще говоря, не противоречит общей теории относительности, однако для этого темная энергия должна обладать специальным свойством — отрицательным давлением. Это резко отличает её от обычных форм материи. Не будет преувеличением сказать, что природа темной энергии — это главная загадка фундаментальной физики XXI века.

Один из кандидатов на роль темной энергии — вакуум. Плотность энергиии вакуума не изменяется при расширении Вселенной, а это и означает отрицательное давление вакуума 7 . Другой кандидат — новое сверхслабое поле, пронизывающее всю Вселенную; для него употребляют термин «квинтэссенция». Есть и другие кандидаты, но в любом случае темная энергия представляет собой что-то совершенно необычное.

Другой путь объяснения ускоренного расширения Вселенной состоит в том, чтобы предположить, что сами законы гравитации видоизменяются на космологических расстояниях и космологических временах. Такая гипотеза далеко не безобидна: попытки обобщения общей теории относительности в этом направлении сталкиваются с серьезными трудностями.

По-видимому, если такое обобщение вообще возможно, то оно будет связано с представлением о существовании дополнительных размерностей пространства, помимо тех трех измерений, которые мы воспринимаем в повседневном опыте.

К сожалению, сейчас не видно путей прямого экспериментального исследования темной энергии в земных условиях. Это, конечно, не означает, что в будущем не может появиться новых блестящих идей в этом направлении, но сегодня надежды на прояснение природы темной энергии (или, более широко, причины ускоренного расширения Вселенной) связаны исключительно с астрономическими наблюдениями и с получением новых, более точных космологических данных. Нам предстоит узнать в деталях, как именно расширялась Вселенная на относительно позднем этапе её эволюции, и это, надо надеяться, позволит сделать выбор между различными гипотезами.

6 Речь идет о наблюдениях сверхновых типа 1а.

7 Изменение энергии при изменении объема определяется давлением, ΔЕ = —pΔV. При расширении Вселенной энергия вакуума растет вместе с объемом (плотность энергии постоянна), что возможно, только если давление вакуума отрицательно. Отметим, что противоположные знаки давления и энергии вакуума прямо следуют из Лоренц-инвариантности.

Состоит ли темная материя более чем из одной частицы?

Обычная материя состоит из частиц, таких как протоны и электроны, а также большего количества более необычных частиц, таких как нейтрино, мюоны и пионы. В результате чего, некоторые исследователи задаются вопросом: «Может ли темная материя, составляющая 85 процентов материи во Вселенной, быть столь же сложной?».

Что такое тёмная материя о которой постоянно говорят в фильмах

«Нет никаких веских оснований предполагать, что вся темная материя во Вселенной построена из одного типа частиц. Темные протоны могут объединяться с темными электронами, образуя темные атомы и создавая конфигурации, столь же разнообразные и интересные, как те, которые можно найти в видимом мире»,  ̶  сказал физик Андрей Кац из Гарвардского университета.

В то время как подобные предположения все чаще представлялись в физических лабораториях, выяснение способа их подтверждения или опровержения до сих пор ускользало от ученых.

Существуют ли темные фотоны?

Наряду с дополнительными частицами темной материи существует возможность того, что темная материя испытывает силы, аналогичные тем, которые испытывает обычная материя.

Некоторые исследователи искали «темные фотоны», которые были бы подобны фотонам, которыми обмениваются нормальные частицы и вызывают электромагнитную силу.

Если темные фотоны действительно существуют, электрон-позитронные пары могут аннигилировать и произвести одну из неизвестных частиц, потенциально открывая совершенно новую часть Вселенной.

Может ли темная материя состоять из аксионов?

По мере того как физики все больше и больше теряют любовь к вимпам, другие частицы темной материи начинают завоевывать их интерес. Одной из главных замен является гипотетическая частица, известная как аксион (ее сейчас ищут в нескольких экспериментах), которая была бы чрезвычайно легкой, возможно, намного меньше, чем протон.

Недавнее компьютерное моделирование повысило вероятность того, что эти аксионы могут образовывать звездоподобные объекты, способные производить обнаруживаемое излучение, которое весьма напоминает быстрые радиовсплески.

Что такое тёмная материя о которой постоянно говорят в фильмах

Каковы свойства темной материи?

Астрономы открыли темную материю через ее гравитационные взаимодействия с обычной материей, предполагая, что это ее основной способ заявить о своем существовании во Вселенной. Но при попытке понять истинную природу темной материи, исследователи попадают в тупик.

Согласно некоторым теориям, частицы темной материи должны быть их собственными античастицами, что означает, что две частицы темной материи будут при встрече аннигилировать друг с другом.

Эксперимент с магнитным альфа-спектометром на Международной космической станции ведет поиск характерных признаков этой аннигиляции с 2011 года и уже зафиксировал сотни тысяч событий.        Ученые до сих пор не уверены, исходят ли они из темной материи. К сожалению, сигнал еще не помог им точно определить, что такое темная материя.

Существует ли темная материя в каждой галактике?

Поскольку темная материя значительно превосходит обычную, ее часто называют управляющей силой, которая образовывает большие структуры, такие как галактики и галактические скопления.

Поэтому было неожиданно, когда в начале этого года астрономы объявили, что они обнаружили галактику под названием NGC 1052-DF2, которая, казалось, вообще не содержит никакой темной материи.

«Темная материя, по-видимому, не является обязательным условием для формирования галактики», ̶ сказал Питер ван Доккум из Йельского университета.

Однако летом, отдельная команда опубликовала анализ, предполагающий, что команда ван Доккума неверно измерила расстояние до галактики, означая, что ее видимая материя была намного тусклее и легче, чем первые находки, и что большая часть ее массы была в темной материи, нежели предполагалось ранее.

Что известно про антиядра?

Все антиатомные достижения человечества относятся только к антиводороду. Антиатомы других элементов до сих пор не синтезированы в лаборатории и не наблюдались в природе. Причина простая: антиядра создавать еще труднее, чем антипротоны.

Единственный известный нам способ создавать антиядра — это сталкивать тяжелые ядра больших энергий и смотреть, что там получается. Если энергия столкновений велика, в нем родятся и разлетятся во все стороны тысячи частиц, в том числе, антипротоны и антинейтроны. Антипротоны и антинейтроны, случайно вылетевшие в одном направлении, могут объединиться друг с другом — получится антиядро.

Что такое тёмная материя о которой постоянно говорят в фильмах
Детектор ALICE умеет различать разные ядра и антиядра по энерговыделению и направлению закрутки в магнитном поле.

Метод простой, но не слишком неэффективный: вероятность синтезировать ядро таким способом резко падает при увеличении числа нуклонов. Легчайшие антиядра, антидейтроны, впервые наблюдались ровно полвека назад. Антигелий-3 увидели в 1971 году. Известен также антитритон и антигелий-4, причем последний был открыт совсем недавно, в 2011 году. Более тяжелые антиядра до сих пор не наблюдались.

Что такое тёмная материя о которой постоянно говорят в фильмах
Два параметра, описывающие нуклон-нуклонные взаимодействия (длина рассеяния f0 и эффективный радиус d0) для разных пар частиц. Красная звездочка — результат для пары антипротонов, полученный коллаборацией STAR

К сожалению, антиатомов таким способом не сделаешь. Антиядра не только рождаются редко, но и обладают слишком большой энергией и вылетают во все стороны. Пытаться их отловить на коллайдере, чтобы затем отвести по специальному каналу и охладить, нереально.

Впрочем, иногда достаточно внимательно отследить антиядра на лету, чтобы получить кое-какую интересную информацию об антиядерных силах, действующих между антинуклонами. Самая простая вещь — это аккуратно измерить массу антиядер, сравнить ее с суммой масс антипротонов и антинейтронов, и вычислить дефект масс, т.е. энергию связи ядра. Это недавно проделал эксперимент ALICE, работающий на Большом адронном коллайдере; энергия связи для антидейтрона и антигелия-3 в пределах погрешности совпала с обычными ядрами.

Другой, более тонкий эффект изучил эксперимент STAR на американском коллайдере тяжелых ионов RHIC. Он измерил угловое распределение рожденных антипротонов и выяснил, как оно меняется, когда два антипротона вылетают в очень близком направлении. Корреляции между антипротонами позволили впервые измерить свойства действующих между ними «антиядерных» сил (длину рассеяния и эффективный радиус взаимодействия); они совпали с тем, что известно про взаимодействие протонов.

Есть ли антиматерия в космосе?

Когда Поль Дирак вывел из своей теории существование позитронов, он вполне допускал, что где-то в космосе могут существовать настоящие антимиры. Сейчас мы знаем, что звезд, планет, галактик из антивещества в видимой части Вселенной нет. Дело даже не в том дело, что не видно аннигиляционных взрывов; просто совершенно невообразимо, как они вообще могли бы образоваться и дожить до настоящего времени в постоянно эволюционирующей вселенной.

Но вот вопрос «как так получилось» — это еще одна большущая загадка современной физики; на научном языке она называется проблемой бариогенеза. Согласно космологической картине мира, в самой ранней вселенной частиц и античастиц было поровну. Затем, в силу нарушения CP-симметрии и барионного числа, в динамично развивающейся вселенной должен был появиться небольшой, на уровне одной миллиардной, избыток материи над антиматерией. При остывании вселенной все античастицы проаннингилировали с частицами, выжил лишь этот избыток вещества, который и породил ту вселенную, которую мы наблюдаем. Именно из-за него в ней осталось хоть что-то интересное, именно благодаря нему мы вообще существуем. Как именно возникла эта асимметрия — неизвестно. Теорий существует много, но какая из них верна — неизвестно. Ясно лишь, что это точно должна быть какая-то Новая физика, теория, выходящая за пределы Стандартной модели, за границы экспериментально проверенного.

Что такое тёмная материя о которой постоянно говорят в фильмах

Три варианта того, откуда могут взяться античастицы в космических лучах высокой энергии: 1 — они могут просто возникать и разгоняться в «космическом ускорителе», например в пульсаре; 2 — они могут рождаться при столкновениях обычных космических лучей с атомами межзвездной среды; 3 — они могут возникать при распаде тяжелых частиц темной материи.

Хоть планет и звезд из антивещества нет, антиматерия в космосе все же присутствует. Потоки позитронов и антипротонов разных энергий регистрируются спутниковыми обсерваториями космических лучей, такими как PAMELA, Fermi, AMS-02. Тот факт, что позитроны и антипротоны прилетают к нам из космоса, означает, что они где-то там рождаются. Высокоэнергетические процессы, которые могут их породить, в принципе известны: это сильно замагниченные окрестности нейтронных звезд, разные взрывы, ускорение космических лучей на фронтах ударных волн в межзвездной среде, и т.п. Вопрос в том, могут ли они объяснить все наблюдаемые свойства потока космических античастиц. Если окажется, что нет, это будет свидетельством в пользу того, что некоторая их доля возникает при распаде или аннигиляции частиц темной материи.

Здесь тоже есть своя загадка. В 2008 году обсерватория PAMELA обнаружила подозрительно большое количество позитронов больших энергий по сравнению с тем, что предсказывало теоретическое моделирование. Этот результаты был надавно подтвержден установкой AMS-02 — одним из модулей Международной Космической Станции и вообще самым крупным детектором элементарных частиц, запущенным в космос (и собранным догадайтесь где? — правильно, в ЦЕРНе). Этот избыток позитронов будоражит ум теоретиков — ведь ответственным за него могут оказаться не «скучные» астрофизические объекты, а тяжелые частицы темной материи, которые распадаются или аннигилируют в электроны и позитроны. Ясности тут пока нет, но установка AMS-02, а также многие критически настроенные физики, очень тщательно изучают это явление.

Что такое тёмная материя о которой постоянно говорят в фильмах
Отношение антипротонов к протонам в космических лучах разной энергии. Точки — экспериментальные данные, разноцветные кривые — астрофизические ожидания с разнообразными погрешностями.

С антипротонами тоже ситуация неясная. В апреле этого года AMS-02 на специальной научной конференции представил предварительные результаты нового цикла исследований. Главной изюминкой доклада  стало утверждение, что AMS-02 видит слишком много антипротонов высокой энергии — и это тоже может быть намеком на распады частиц темной материи. Впрочем, другие физики с таким бодрым выводом не согласны. Сейчас считается, что антипротонные данные AMS-02, с некоторой натяжкой, могут быть объяснены и обычными астрофизическими источниками. Так или иначе, все с нетерпением ждут новых позитронных и антипротонных данных AMS-02.

AMS-02 зарегистрировала уже миллионы позитронов и четверть миллиона антипротонов. Но у создателей этой установки есть светлая мечта — поймать хоть одно антиядро. Вот это будет настоящая сенсация — совершенно невероятно, чтобы антиядра родились где-то в космосе и долетели бы до нас. Пока что ни одного такого случая не обнаружено, но набор данных продолжается, и кто знает, какие сюрпризы готовит нам природа.

Антиматерия — антигравитирует? Как она вообще чувствует гравитацию?

Если опираться только на экспериментально проверенную физику и не вдаваться в экзотические, никак пока не подтвержденные теории, то гравитация должна действовать на антиматерию точно так же, как на материю. Никакой антигравитации для антиматерии не ожидается. Если же позволить себе заглянуть чуть дальше, за пределы известного, то чисто теоретически возможны варианты, когда в нагрузку к обычной универсальной гравитационной силе существует нечто добавочное, которое по-разному действует на вещество и антивещество. Какой бы ни призрачной казалась эта возможность, ее требуется проверить экспериментально, а для этого надо поставить опыты по проверке того, как антиматерия чувствует земное притяжение.

Долгое время это толком не удавалось сделать по той простой причине, что для этого надо создать отдельные атомы антивещества, поймать их в ловушку, и провести с ними эксперименты. Сейчас это делать научились, так что долгожданная проверка уже не за горами.

Главный поставщик результатов — всё тот же ЦЕРН со своей обширной программой по изучению антивещества. Некоторые из этих экспериментов уже косвенно проверили, что с гравитацией у антиматерии всё в порядке. Например, недавний эксперимент BASE обнаружил, что (инертная) масса антипротона совпадает с массой протона с очень высокой точностью. Если бы гравитация действовала на антипротоны как-то иначе, физики заметили бы разницу — ведь сравнение производилось в одной и той же установке и в одинаковых условиях. Результат этого эксперимента: действие гравитации на антипротоны совпадает с действием на протоны с точностью лучше одной миллионной.

Что такое тёмная материя о которой постоянно говорят в фильмах
Впрочем, это измерение — косвенное. Для пущей убедительность хочется поставить прямой эксперимент: взять несколько атомов антивещества, уронить их и посмотреть, как они будут падать в поле тяжести. Такие эксперименты тоже проводятся или готовятся в ЦЕРНе. Первая попытка была не слишком впечатляющей. В 2013 году эксперимент ALPHA, — который к тому времени уже научился удерживать облачко антиводорода в своей ловушке, — попробовал определить, куда будут падать антиатомы, если ловушку отключают. Увы, из-за низкой чувствительности эксперимента однозначного ответа получить не удалось: времени прошло слишком мало, антиатомы метались в ловушке туда-сюда, и вспышки аннигиляции случались то здесь, то там.

Ситуацию обещают кардинально улучшить два других церновских эксперимента: GBAR и AEGIS. Оба эти эксперимента проверят разными способами, как падает в поле тяжести облачко сверххолодного антиводорода. Их ожидаемая точность по измерению ускорения свободного падения для антивещества — около 1%. Обе установки сейчас находятся в стадии сборки и отладки, а основные исследования начнутся в 2017 году, когда антипротонный замедлитель AD будет дополнен новым накопительным кольцом ELENA.

Что такое тёмная материя о которой постоянно говорят в фильмах
Варианты поведения позитрона в твердом веществе.

Что случится, если позитрон попадет в вещество?

Что такое тёмная материя о которой постоянно говорят в фильмах
Образование молекулярного позитрония на кварцевой поверхности.

Если вы дочитали до этого места, то уже прекрасно знаете, что как только частица антивещества попадает в обычное вещество, происходит аннигиляция: частицы и античастица исчезают и превращаются в излучение. Но насколько быстро это происходит? Представим себе позитрон, который прилетел из вакуума и вошел в твердое вещество. Проаннигилирует ли он при соприкосновении с первым же атомом? Вовсе не обязательно! Аннилигяция электрона и позитрона — процесс не мгновенный; он требует длительного по атомным масштабам времени. Поэтому позитрон успевает прожить в веществе яркую и насыщенную нетривиальными событиями жизнь.Во-первых, позитрон может подхватить бесхозный электрон и образовать связанное состояние — позитроний (Ps). При подходящей ориентации спинов, позитроний может жить десятки наносекунд до аннигиляции. Находясь в сплошном веществе, он успеет за это время столкнуться с атомами миллионы раз, ведь тепловая скорость позитрония при комнатной температуре — около 25 км/сек.

Во-вторых, дрейфуя в веществе, позитроний может выйти на поверхность и залипнуть там — это позитронный (а точнее, позитрониевый) аналог адсорбции атомов. При комнатной температуре он не сидит на одном месте, а активно путешествует по поверхности. И если это не внешняя поверхность, а пора нанометрового размера, то позитроний оказывается пойманным в ней на длительное время.

Дальше — больше. В стандартном материале для таких экспериментов, пористом кварце, поры не изолированы, а объединены наноканалами в общую сеть. Тепленький позитроний, ползая по поверхности, успеет обследовать сотни пор. А поскольку позитрониев в таких экспериментах образуется много и почти все они вылезают в поры, то рано или поздно они натыкаются друг на друга и, взаимодействуя, иногда образуют самые настоящие молекулы — молекулярный позитроний, Ps2. Дальше уже можно изучать, как ведет себя позитрониевый газ, какие у позитрония есть возбужденые состояния и т.д. И не думайте, что это чисто теоретические рассуждения; все перечисленные эффекты уже проверены и изучены экспериментально.

Есть ли у антивещества практические применения?

Разумеется. Вообще, любой физический процесс, если он открывает перед нами некую новую грань нашего мира и не требует при этом каких-то сверхзатрат, обязательно находит практические применения. Причем такие применения, до которых бы мы сами не догадались, если бы не открыли и не изучили предварительно научную сторону этого явления.

Самым известным прикладным применением античастиц является ПЭТ, позитронно-эмиссионная томография. Вообще, у ядерной физики есть впечатляющий послужной список медицинских применений, и античастицы тут тоже не остались без дела. При ПЭТ в организм пациента вводят маленькую дозу препарата, содержащего нестабильный изотоп с коротким временем жизни (минуты и часы) и распадающийся за счет положительного бета-распада. Препарат накапливается в нужных тканях, ядра распадаются и испускают позитроны, которые аннигилируют поблизости и выдают два гамма-кванта определенной энергии. Детектор регистрирует их, определяет направление и время их прилета, и восстанавливает то место, где произошел распад. Так удается построить трехмерную карту распределения вещества с высоким пространственным разрешением и с минимальной радиационной дозой.

Позитроны можно применять и в материаловедении, например, для измерения пористости вещества. Если вещество сплошное, то позитроны, застрявшие в веществе на достаточной глубине, довольно быстро аннигилируют и испускают гамма-кванты. Если же внутри вещества есть нанопоры, аннигиляция задерживается, поскольку позитроний залипает на поверхности поры. Измеряя эту задержку, можно узнать степень нанопористости вещества бесконтактным и неразрушающим методом. Как иллюстрация этой методики — недавняя работа про то, как возникают и затягиваются нанопоры в тончайшем слое льда при осаждении пара на поверхность. Аналогичный подход работает и при изучении структурных дефектов в полупроводниковых кристаллах, например, вакансий и дислокаций, позволяет измерить структурную усталость материала.

Медицинское применение может найтись и для антипротонов. Сейчас в том же ЦЕРНе проводится эксперимент ACE, который изучает воздействие антипротонного пучка на живые клетки. Его цель — изучить перспективы использования антипротонов для терапии раковых опухолей.

Что такое тёмная материя о которой постоянно говорят в фильмах
Энерговыделение ионного пучка и рентгена при прохождении сквозь вещество.

Эта идея может с непривычки ужаснуть читателя: как так, антипротонным пучком — и по живому человеку?! Да, и это намного безопаснее, чем облучать глубокую опухоль рентгеном! Антипротонный пучок специально подобранной энергии становится в руках хирурга эффективным инструментом, с помощью которого можно выжигать опухоли глубоко внутри тела и минимизировать воздействии на окружающие ткани. В отличие от рентгена, который жжет всё, что попадает под луч, тяжелые заряженные частицы на своем пути сквозь вещество выделяют основную долю энергии на последних сантиметрах перед остановкой. Настраивая энергию частиц, можно варьировать глубину, на которой останавливаются частицы; вот на эту область размером в миллиметры и придется основное радиационное воздействие.

Такая радиотерапия протонным пучком уже давно используется во многих хорошо оснащенных клиниках мира. В последнее время некоторые из них переходят на ионную терапию, в которой используется пучок не протонов, а ионов углерода. Для них профиль энерговыделения еще контрастнее, а значит, эффективность пары «терапевтическое воздействия против побочных эффектов» возрастает. Но уже давно предлагается попробовать для этой цели и антипротоны. Ведь они, попадая в вещество, не просто отдают свою кинетическую энергию, но еще и аннигилируют после остановки — и это усиливает энерговыделение в несколько раз. Где оседает это дополнительное энерговыделение — сложный вопрос, и его требуется внимательно изучить, прежде чем запускать клинические испытания.

Именно этим и занимается эксперимент ACE. В ходе него исследователи пропускают пучок антипротонов через кюветку с бактериальной культурой и измеряют их выживаемость в зависимости от места, от параметров пучка, и от физических характеристик окружающей среды. Такой методичный и, пожалуй, скучноватый сбор технических данных — важный начальный этап любой новой технологии.

 

Что астрономам известно о темной материи?

Темная материя — субстанция, которая не взаимодействует с другими материями с помощью электромагнитных (EM) или сильных ядерных сил. Отсутствие электромагнитных взаимодействий означает, что она не может испускать, поглощать, отражать, преломлять или рассеивать свет. Это, естественно, делает ее довольно сложным предметом для наблюдений. Тем не менее, около 85% всего вещества во Вселенной представляет собой темную материю.

Пока у ученых нет ни одного практического доказательства того, что темная материя действительно существует, но есть теоретические. Вот три главных.

Галактические кривые вращения

Когда один объект вращается вокруг другого, объект на орбите должен постоянно ускоряться к центральному (или, точнее, они оба ускоряются к их объединенному центру масс). Без этого ускорения орбитальное тело просто улетит.

Чем быстрее движется орбитальное тело, тем большее ускорение требуется, чтобы удержать его на орбите. Поскольку в этом случае ускорение происходит из-за силы тяжести, это означает, что центральная масса должна быть больше.

Это знание позволяет ученым «взвешивать» разные части галактики, а также измерять скорости вращения, сравнивая красные смещения на приближающейся и удаляющейся сторонах галактики. При взвешивании астрономы видят несоответствие между массой всех объектов в галактике и ее общей массой.

Что такое тёмная материя о которой постоянно говорят в фильмах
Красное смещение — сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением слабого диффузного рассеяния, эффекта Доплера или гравитационного красного смещения, или их комбинацией. Впервые сдвиг спектральных линий в спектрах небесных тел описал французский физик Ипполит Физо в 1848 году и предложил для объяснения сдвига эффект Доплера, вызванный лучевой скоростью звезды.

Гравитационное линзирование

Согласно общей теории относительности, всякий раз, когда свет проходит через гравитационное поле, он слегка искажается. Это действует как гравитационная линза и может производить, например, «кольца Эйнштейна», как на изображении ниже.

Что такое тёмная материя о которой постоянно говорят в фильмах
Общая теория относительности Эйнштейна гласит, что гравитация столь крупных космических объектов, как галактики, искривляет пространство вокруг себя и отклоняет лучи света. При этом возникает искаженное изображение другой галактики — источника света.

«Кольцо Эйнштейна» на изображении выше — это искаженное изображение одной галактики (она подсвечена синим), расположенной за другой (красной) галактикой в ​​центре. Свет от синей распространяется во всех направлениях, но изгибается гравитацией красной галактики. Это означает, что свет, который, например, был изначально направлен прямо на Землю, никогда не достигнет нашей планеты — в отличие от света, который имел другое направление, но исказился линзой и исходит как будто из всех направлений сразу. Этот процесс объясняет появление кольца.

В слабых гравитационных линзах статистический анализ искажений в свете, который мы получаем, позволяет «заметить» гравитационное поле между Землей и далекими галактиками. Часто в этом поле оказывается больше массы — соответственно, и больше материи, — чем ученые могут объяснить.

Пример гравитационного линзирования, которое с точки зрения существующей теории доказывает наличие темной материи, — фотография скопления галактик Пуля, расположенного в созвездии Киля.

Что такое тёмная материя о которой постоянно говорят в фильмах
На снимке изображены последствия столкновения двух галактик. Красным на изображении показаны области видимой материи, синим — темная материя, наличие которой определено гравитационным линзированием.

Столь отчетливое разделение объясняется тем, что большая часть светящегося вещества в скоплении галактик находится во внутрикластерной среде — в горячей, плотной плазме. Когда части плазмы сталкиваются друг с другом, значительное количество вещества замедляется и остается в центре. Но темная материя слабо взаимодействует с веществом, поэтому ее компоненты из двух кластеров могут свободно проходить друг через друга — это приводит к изображенному на фотографии разделению.

Реликтовое излучение

В течение первых нескольких сотен тысяч лет после Большого взрыва Вселенная была достаточно горячей, чтобы сильно ионизироваться. Это на время делало ее почти непрозрачной для света — фотоны вращались, как и любая другая частица. Однако, когда все достаточно охладилось, значительные количества протонов и электронов объединились в нейтральный водород, который стал достаточно прозрачен для большей части окружающего его света. Это процесс произошел довольно быстро (с точки зрения космологического времени) — в результате весь свет, содержащийся во Вселенной, условно говоря, внезапно был выпущен наружу, сделав снимок на том этапе ее эволюции. Так упрощенно можно описать реликтовое излучение.

Чтобы зафиксировать этот свет, ученые могут направить радиотелескопы в любом направлении — и в зависимости от области наблюдений температура будет незначительно меняться. Разница в температуре объясняется наличием или отсутствием темной материи в этой области.

Что необычного нашли в первой галактике?

DF2 — галактика, которая входит в большую группу во главе с массивной эллиптической галактикой NGC 1052. Галактика привлекла внимание ученых тем, что она выглядела по-разному на фотографиях, сделанных аппаратами Dragonfly и Sloan Digital Sky Survey (SDSS). На первом галактика представляла собой пятно слабого света, тогда как на втором — группу точечных объектов.

На основе этих наблюдений ученые во главе с Питером ван Доккумом определили десять шаровых скоплений (большие группы старых звезд) внутри галактики и обнаружили, что они движутся в три раза медленнее, чем при наличии большого количества темной материи. Дело в том, что если бы масса была галактики была больше массы видимых объектов, скопления вращались быстрее.

Что такое тёмная материя о которой постоянно говорят в фильмах
Научное сообщество оценило публикацию критически — в качестве ошибки исследователей называлось то, что они наблюдали лишь за десятью скоплениями и только в течение двух ночей. Скептики посчитали, что ученые могли упустить из виду ключевые детали движения звездных скоплений, и это в результате исказило их оценку массы галактики и ее видимой материи.

А во второй?

Единственным способом доказать правильность своих наблюдений стал поиск второй галактики, в которой содержалось бы минимальное количество темной материи — и в марте 2019 года такая галактика была обнаружена.

Исследователи опубликовали две научные статьи — в первой они повторно измерили массу DF2 с помощью усовершенствованной камеры «Хаббла» и десятиметрового телескопа обсерватории Кека на Гавайях. На этот раз астрономы наблюдали не только за скоростью движения скоплений, но и за скоростью вращения звезд внутри них. В результате ученые установили, что DF2 является прозрачной ультрадиффузной галактикой, размер которой примерно соответствует Млечному пути. Только звезд в ней оказалось примерно в 200 раз меньше.

Что такое тёмная материя о которой постоянно говорят в фильмах
Вторая статья была посвящена открытию подобной DF2 галактики — DF4, которая находится в том же скоплении рядом с галактикой NGC 1052. Исследователи полагают, что, во-первых, галактики с минимальным количеством темной материи — не редкость, и, во-вторых, что крупная галактика могла «украсть» темную материю у своих более мелких соседей.

Как отсутствие темной материи может служить доказательством ее наличия?

Для понимания утверждения, что отсутствие темной материи в двух галактиках подтверждает ее наличие во Вселенной в соответствии с Общей теорией относительности, стоит рассмотреть критику идеи о наличии темной материи.

Часть ученых не согласна с тем, что во Вселенной существует темная материя, а теоретические свидетельства ее наличия приписывают так называемой модифицированной ньютоновской динамике (MOND). Эта альтернативная теория гласит, что гравитация в космических масштабах работает не так, как предсказали Исаак Ньютон или Альберт Эйнштейн. Это значит, что Общая теория относительности, на которой строятся теории о существовании темной материи, в случае с галактиками не работает.

Например, физик-теоретик Эрик Верлинде из Амстердамского университета в 2016 году опубликовал научную статью, в которой рассмотрел гравитацию как побочный продукт квантовых взаимодействий и предположил, что дополнительная гравитация, приписываемая темной материи, является эффектом темной энергии — фоновой энергии, вплетенной в ткань пространства-времени Вселенной.

Другими словами, Верлинде считает, что темная материя — не материя, а лишь взаимодействие между обычной материей и темной энергией.

Открытие ученых из Йельского университета демонстрирует, что темная материя может быть отделена от обычной — при условии, что обе обнаруженные галактики ведут себя в соответствии со стандартной теорией гравитации. То есть происходящие в них процессы можно объяснить с помощью уравнений, открытых Ньютоном и Кеплером.