Мягкая роботизированная рука от Festo может сама обучаться манипуляции объектами (4 фото + видео)

За те доли секунды до того момента, как вы возьмете какой-нибудь объект в руку, ваш мозг рассчитает все возможные комбинации движений, необходимые для того чтобы безопасно и надежно схватить и переместить предмет. Такая подсознательная функция мозга развивается у человека с детства в процессе обучения. Результат аналогичного подхода к обучению продемонстрировала немецкая компания Festo, занимающаяся производством промышленного оборудования и систем автоматизации. Компания представил новую роботизированную руку BionicSoftHand, которая не только обладает удивительной гибкостью, но еще и использует искусственный интеллект для расчета правильного алгоритма манипуляций объектами до того момента как, собственно, их берет.

BionicSoftHand – это очередной пример «мягкого» подхода в робототехнике. Роботы, использующиеся на производстве для перемещения тяжелых объектов, выполнены из стали и работают на базе мощных пневматических систем, делающих их сильными и быстрыми, но совсем неделикатными. Контакт машины с человеком в момент ее работы чаще всего заканчиваться плачевными последствиями для последнего. В свою очередь так называемые мягкие роботы используют в своей конструкции преимущественно более гибкие материалы, например, «умные» ткани или надувные части. Поэтому взаимодействие с ними существенно менее травмоопасно.

Мягкая роботизированная рука от Festo может сама обучаться манипуляции объектами (4 фото + видео)

Для максимальной безопасности Festo не использует в новой роботизированной руке твердую скелетную структуру. Вместо этого она оснащена надувными сильфонами, вокруг которых располагается созданная с помощью технологии 3D-печати трехмерная ткань из эластичных волокон, которая изгибается вместе с движениями руки, когда в сильфоны подается воздух. Другими словами, если упростить, похоже все это больше на работу наших мышц и сухожилий.

Мягкая роботизированная рука от Festo может сама обучаться манипуляции объектами (4 фото + видео)

Мягкие пальцы роботизированной руки BionicSoftHand оснащены датчиками инерции (движения) и силы, также созданными на базе гибких материалов, способных изгибаться в момент движения. Сенсоры обеспечивают обратную связь с системами управления рукой, сообщая о совершаемых движениях самой руки и пальцев, а также контакте с объектом. Кроме того, они передают информацию о том, правильно ли расположен объект в руке для его манипуляции. Другими словами, комплекс датчиков наделяет руку контактным восприятием, имитирующим наше чувство осязания.

Мягкая роботизированная рука от Festo может сама обучаться манипуляции объектами (4 фото + видео)

Обычно производственные роботизированные манипуляторы программируют таким образом, чтобы они могли выполнять бесконечное число определенных специфических движений. Конечно в их системах допускается некоторая доля вариантного выполнения задачи, но в основном вся их работа сводится к одинаковому набору манипуляций с объектами, например, перемещением их из одного места в другое.

BionicSoftHand в этом плане больше «похожа на человека»: перед началом манипуляции объектом ее система искусственного интеллекта самостоятельно перебирает все возможные комбинации того, как правильно взять объект, как его повернуть и положить обратно. Для этого она использует комплексную виртуальную симуляцию, в которой методом проб и ошибок подбирает правильный вариант дальнейшего действия. Будучи ребенком, вы, наверное, раз 100 роняли чашку с каким-нибудь напитком, пока не научились ее правильно держать. Так вот, BionicSoftHand выполняет то же самое, только в виртуальной среде, перебирая миллиарды ошибочных вариантов и в конечном итоге находя наиболее правильный и оптимальный. За доли секунды.

В демонстрационном видео роботу дали задачу переместить помещенный в руку 12-гранный объект таким образом, чтобы определенная грань смотрела вверх. Как именно это сделать – машине не объяснили. Сперва, с помощью 3D-камеры с восприятием глубины машина создает цифровую копию объекта в руке, а затем помещает ее в симуляцию со множеством виртуальных рук, которые манипулируют объектом до тех пор, пока не будет подобрана правильная комбинация. Затем в дело вступает уже физическая рука BionicSoftHand. При таком методе обучения машина способна обучаться гораздо быстрее ребенка. При этом, при выполнении новых задач, она может задействовать уже выученные ранее алгоритмы манипуляций.