С самых ранних веков человечество задавалось вопросами о том, какое место оно занимает в мире, что его окружает и как это называется. Звёзды и планеты являются частицами Вселенной, в которой мы находимся. Знания об этих элементах, теории о возникновении мира, физические гипотезы, математические законы, философия – все это впоследствии включилось в одну единую науку. Её назвали космология. Но что собой представляет современная космология и на чём она основана?

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Содержание

Что изучает космология?

Космологи занимаются вопросами происхождения и эволюции Вселенной. Это включает прошлое — момент Большого взрыва, настоящее, и прогноз будущего.

Космология изучает научным путём крупномасштабные свойства Вселенной как одно целое. Используя научный метод, космология стремится понять происхождение, развитие и будущее всей Вселенной.

Космология изучает теории и научным путём пытается доказать их правильность. Основной теорией возникновения Вселенной является теория Большого взрыва.

Понятие космологии с точки зрения науки

Космология — это наука, которая объединяет астрофизику и астрономию. Данные для нее получают путем наблюдения за астрономическими изменениями во Вселенной. Для этого применяются законы относительности, которые были приняты ещё самим Альбертом Эйнштейном. Уже в 20-х годах XX века эта наука была отнесена к классу точных, до этого она считалась частью философских учений. Современная космология на сегодняшний день становится очень популярной. Она объединяет в себе новые открытия в сфере физики, астрономии, астрологии и философии. Последним достижением является так называемая теория Большого взрыва, согласно которой наша Вселенная меняется в своих размерах из-за высокой плотности и температуры.

История становления космологии

О происхождении и эволюции Вселенной люди начали задумываться ещё в глубокой древности. Первоначально люди объясняли процесс сотворения наблюдаемого мира действием сверхъестественных сил — богов. Эпоха Возрождения и буржуазные революции привели к значительному уменьшению влияния религии на мировоззренческие взгляды людей. Последние пять веков ученые стараются объяснить процесс эволюции Вселенной с помощью естественных законов физики, химии и т. д.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Одна из первых версий строения мира — плоская земля, которая покоится на трех китах и черепахе

Изначально в древние времена люди знали очень ограниченный список астрономических объектов: Земля, Луна, 5 планет Солнечной Системы и т.н. “неподвижные” звезды. Наблюдаемое движение Солнца, Луны и планет по земному небу привело к ошибочному мнению, что Земля является центром Солнечной Системы и всей Вселенной. Подобная мировоззренческая система получила название геоцентрическая система мира. Лишь более тщательные наблюдения за движением небесных тел в дальнейшем позволили выяснить, что центром Солнечной Системы является Солнце, а вокруг Земли вращается только Луна. Подобная система называется гелиоцентрической. Насчет же звезд первоначально существовало несколько мнений: от отверстий в небесной сфере до очень далеких солнц (последний вариант в гелиоцентрической системе объяснялся отсутствием параллактического смещения по причине орбитального движения Земли вокруг Солнца).

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Геоцентрическая система

Изобретение телескопа позволило радикально увеличить познавательные способности в изучении Вселенной. Даже небольшие телескопы показали, что число звезд на небе исчисляется многими миллионами. К середине 19 века телескопические наблюдения позволили впервые определить истинное (тригонометрическое) расстояние до ближайших звезд. В дальнейшем была создана шкала измерения расстояния до ещё более далеких объектов (на основе наблюдения особого типа переменных звезд — цефеид и измерения красного смещения спектров астрономических объектов). Особенно примечательным оказался последний момент. Как известно, доплеровское смещение спектров астрономических объектов бывает двух видов: смещение к синей или красной части спектров. Однако спектроскопия удаленных объектов (преимущественно туманностей — далеких галактик) показала, что в спектрах преобладает смещение к красной части спектров. Этот факт стал ярким доказательством того, что наша Вселенная расширяется — расстояние между сверхскоплениями галактик постепенно увеличивается, несмотря на силы гравитационного притяжения и потери энергии по причине излучения гравитационных волн.

Развитие космологии в последние десятилетия

Основные современные направления развития космологии связаны с несколькими пунктами:

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Структура Вселенной в общем

— наблюдение в ближнем инфракрасном диапазоне (спектр излучения наиболее далеких объектов в видимой части нашей Вселенной смещен к ИК-диапазону). Подобные наблюдения позволяют изучать самые первые звезды и галактики Вселенной. С другой стороны набирает популярность использование “природных” телескопов. Речь идет о наблюдениях далеких гравитационных линз. Искривление гравитационных полей массивных скоплений галактик позволяет увеличивать фоновые изображения очень далеких и слабых объектов – первых звезд и галактик. Подобные наблюдения уже позволили наблюдать очень далекие сверхновые и даже обычные звезды.

— регистрация реликтового (реликт.) излучения в субмиллиметровом диапазоне электромагнитного спектра. Подобное излучение является остаточным следом момента, когда первичное вещество Вселенной стало прозрачным для электромагнитного излучения. Наблюдение реликтового излучения позволяет изучить Вселенную с возрастом примерно в 370 тысяч лет после момента Большого взрыва.

— в ближайшем будущем ожидается регистрация других экзотических излучений, которые позволят изучить ещё более молодую нашу Вселенную. Речь идет о нейтринном и гравитационно-волновом реликтовом излучениях. Это связано с тем, что проникающая способность нейтрино и гравитационных волн гораздо больше, чем у электромагнитного излучения. Первое излучение рождается во Вселенной возрастом около одной секунды, второе излучение появляется во Вселенной, возраст которой составляет всего 10 в -43 степени секунд.

— в конце 20 века было открыто важное космологическое свойство Вселенной: ускоренное расширение. Подобное явление было обнаружено через изучение сверхновых первого типа, которые являются одними из самых точных индикаторов расстояний до далеких галактик. Открытие ускоренного расширения Вселенной стало доказательством того, что наблюдаемая Вселенная примерно на 75% состоит из темной энергии.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Эволюция Вселенной после рождения

— в настоящее время набирает обороты картографирование Вселенной в наиболее крупных масштабах. Как известно, в целом, Вселенная является пенообразной структурой с ячейками, размер каждой из которых достигает несколько сотен миллионов парсек. Каждая из ячеек представляет собой огромную пустоту, где не наблюдаются крупные галактики. В тоже время границами ячеек являются огромные сверхскопления галактик. Картографирование Вселенной осуществляется, как с помощью спектроскопических обзоров миллионов галактик, так и другими методами (определение расстояния до гамма-всплесков с помощью измерения красного смещения их оптического послесвечения или каталогизация галактик с наиболее активными ядрами — квазаров). В последние годы набирает популярность ещё один метод — тщательное картографирование реликтового излучения. Изучение неоднородностей распределения вещества в молодой и современной Вселенной позволяет понять нюансы эволюции Вселенной. Особое место в процессе картографирования Вселенной занимает поиск “скрытой” массы – т.н. темной материи. Вплоть до настоящего времени остаётся загадкой, что представляет собой подобная материя. Так самые тщательные поиски на земных детекторах элементарных частиц не смогли обнаружить возможные неизвестные элементарные частицы-кандидаты в темную материю.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Неоднородности в реликтовом излучении электромагнитных волн по данным разных обзоров

— рост вычислительных мощностей суперкомпьютеров позволяет улучшать возможности моделирования рождения и эволюции Вселенной. Сравнение наблюдаемой и смоделированной картины развития Вселенной помогает в поисках проблемных мест в теоретической базе космологии.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Карты неба относительно галактической плоскости на различных длинах волн электромагнитного спектра (ЭМС)

В диапазоне ЭМС с длинами волн от половины одного миллиметра наиболее заметными объектами является свечение от спиральных рукавов нашей галактики и зодиакального света (в последнем случае, это линия, пересекающая все небо, которая лучше всего заметна на длине волны в 2.5 сантиметров). На длинах волн ЭМС в несколько миллиметров хорошо заметно фоновое излучение, которое светит на всём небе. Это и есть реликтовое излучение.

Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл три предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.

В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва (БВ).

Космология и космогония (отличия)

Космология изучает крупномасштабные свойства Вселенной, включая теории о её происхождении, эволюции и прогнозе будущего. Космология изучает структуру и изменения в нынешней Вселенной. В то время как космогония занимается вопросами происхождения Вселенной. Она исследует научным путём происхождение космоса и самой реальности.

Основные концептуальные взгляды космологии

На самом деле идей возникновения Вселенной несколько. Одну из них можно назвать теологической. То есть той, которая прописана в Библии. Согласно писаниям, до определенного момента Вселенная была скрыта от других и являлась чем-то невидимым, недостижимым для чужих глаз.

Другие же предположения исходили из научных соображений. Первым был Эйнштейн, утверждавший, что Вселенная находится в стационарном положении. Впоследствии его опроверг Фридман, доказавший её сужение и расширение за счёт определенных движений. Далее, по результатам исследований Хаббла, выяснились наиболее точные расстояния от других галактик и была создана теория Большого взрыва.

Понятие Вселенной в космологии

Исходя из утверждений ученых, Вселенная состоит из определенных структур: галактик, звёзд и планет. Каждая из них прошла определенную эволюцию:

  • прототипом галактик в древние времена были протогалактики;
  • для звезд это протозвёзды;
  • для планет — протопланетные облачные образования.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной
Самой изученной частью на данный момент является метагалактика. Это объединение большого числа галактик, которые находятся в поле зрения астронавтов. Их распределение неравномерно, что экспериментально доказано в астрономии. На сегодняшний день учёные занимаются изучением большого пространства, в котором абсолютно отсутствуют галактики. По возрасту метагалактика приближена к Вселенной.

Сама по себе галактика с точки зрения астрономии — это совокупность звёзд, туманных образований, которые со временем объединяются в достаточно плотную структуру. Они бывают различных форм и размеров. Самой известной из них считается Млечный путь, который может видеть каждый из обитателей Земли. Также в состав галактик входит газ и космическая пыль. Звёзды совершенно разные по возрасту: одни из них могут быть возрастом, как сама Вселенная, другие могут только родиться. Их зарождение происходит при воздействии гравитации, магнитной и других сил.

Таким образом, можно сделать вывод, что космология Вселенной на сегодняшний день обладает очень многими знаниями, однако в тоже время таит в себе много загадок. разгадать которые под стать только самым гениальным учёным.

Что существовало до Большого Взрыва?

Теория космологии утверждает, что пространство началось с Большого Взрыва. Есть мнение, что существуют и другие вселенные, однако нет практического способа их «увидеть», поэтому пока можно лишь сказать, что до Большого Взрыва не было ничего.

Где произошло это событие?

Нет определенной точки, так как до того ничего не существовало. Большой Взрыв просто произошел.

Если другие галактики отходят от нас, то не стоим ли мы в центре Вселенной?

Нет. Если вы окажитесь в другой галактике, то заметите, что остальные отдаляются уже от этой. Наша Вселенная как воздушный шар. Надуйте и взорвите его. Ни одна из точек не будет располагаться в центре, они все просто расширяются.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Некоторые полагают, что концентрические кольца реликтового излучения намекают на наличие вселенной до Большого Взрыва

Сколько Вселенной лет?

Возраст Вселенной составляет 13.7 миллиардов лет (+/- 100 миллионов).

У Вселенной есть конец?

Все зависит от ее плотности. Ученым удалось вычислить критическое число. Если истинная плотность превышает его, то расширение приостановится и пространство начнет сжиматься, пока не вернется в изначальную точку. Если же показатель меньше, то мы получим вечное расширение.

Что было первым: галактика или звезды?

Классическая космология гласит, что после Большого Взрыва пространство представляло собою скопление водорода и немного гелия. Гравитация заставила водород сжиматься и создавать структуры. Но ученые точно не знают механизма формирования. Возможно, сначала создались звезды, которые объединились в галактики, или же это были массивные галактические глыбы, внутри которых начали появляться звезды. Основы современной космологии и развитие ее теорий и принципов раскрываются в видео, смотреть которые можно бесплатно онлайн на нашем сайте.

По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла ~13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается.

Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около1093 г/см³ (Планковская плотность). Ранняя Вселенная в соответствии с моделью БВ представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Красное смещение

Весто Слайфер открыл, что на фотографических изображениях спектра (спектрограммах) галактик, особенно тех, которые расположены далеко от нашей галактики, много красного цвета. Такое смещение в сторону красного цвета было названо красным смещением.

Красное смещение означает, что галактики двигаются: вращаются и удаляются. Это, в свою очередь, говорит о том, что Вселенная расширяется.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Галактики Вселенной, выявленные телескопами астрономической обсерватории в Чили

Закон Хаббла (или закон красного смещения)

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Эдвин Хаббл — американский космолог (1889–1953)

В 1929 году Эдвин Хаббл обнаружил, что есть связь между скоростью, с которой далёкие галактики движутся в противоположную от нашей галактики сторону, и расстоянием до этих галактик.

Он вывел формулу, которая позволяет рассчитать скорость галактики и расстояние до Земли. Это открытие было названо законом Хаббла (также закон красного смещения).

Несмотря на то, что этот закон действует только для далёких галактик, он позволил подтвердить, что Вселенная расширяется. С помощью закона Хаббла можно вычислить момент, когда Вселенная начала расширяться. Это позволило учёным выяснить возраст Вселенной — 13,8 миллиардов лет.

Учёные пришли к выводу, что до образования Вселенной была сингулярность.

Математика в Космологии

«Не может быть языка более универсального и более простого… более подходящего для выражения неизменных отношений естественных вещей, чем математика. Он интерпретирует все явления в одних и тех же терминах, как бы свидетельствуя о единстве и простоте плана Вселенной…»

Жозеф Фурье

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Как писал американский астроном, астрофизик и выдающийся популяризатор науки Карл Саган в книге «Космос. Эволюция Вселенной, жизни и цивилизации»,

«Мы считаем, что есть язык, общий для всех технических цивилизаций, сколь бы различны они ни были. Этим общим языком является математика. Законы природы везде одинаковы. Образцы спектров далеких звезд и галактик выглядят так же, как спектр Солнца или спектры, полученные в лабораторных условиях. Повсюду во Вселенной не только присутствуют одни и те же химические элементы, но также действуют одинаковые законы квантовой механики, управляющие тем, как атомы поглощают и испускают излучение. Далекие галактики, обращающиеся одна вокруг другой, следуют тем же законам гравитационной физики, что заставляют яблоко падать на Землю, а «Вояджер» — продолжать свой путь к звездам. Природа везде действует по сходным схемам».

Интересные примеры загадочной математики космоса

Бетельгейзе

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Красный сверхгигант Бетельгейзе , удалена от Солнечной системы (по разным оценкам) на 427 — 650 световых лет. Минимальная светимость Бетельгейзе больше светимости Солнца в 80 тысяч раз, а максимальная — в 105 тысяч раз.

Бетельгейзе несется в пространстве со скоростью около 30 км/с. Это одна из крупнейших среди известных астрономам звёзд: если её поместить на место Солнца, то при минимальном размере она заполнила бы орбиту Марса, а при максимальном — достигала бы орбиты Юпитера. Расстояние до Бетельгейзе не известно с достаточной точностью, но если оно, как предполагается, составляет 650 световых лет, то диаметр звезды в ходе её пульсаций изменяется от 500 до 800 диаметров Солнца.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Бетельгейзе – будущая сверхновая звезда. Если бы сегодня случилось невероятное событие, и эта звезда взорвалась, то мы не узнаем об этом еще сотни лет, пока это «известие», распространяющееся со скоростью света, преодолеет межзвездное пространство. После взрыва Бетельгейзе над Землёй произойдет вспышка, сравнимая с появлением второго Солнца и останется нейтронная звезда или черная дыра.

Млечный путь

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Млечный путь принадлежит группе из 40 галактик, расположенных недалеко друг от друга, которые имеют гравитационное воздействие друг на друга. Наиболее близкие друг к другу галактики — Млечный Путь и Андромеда, расстояние между ними 2,5 млн. световых лет.

Галактика Андромеда в два раза больше Млечного Пути, ее диаметр составляет 220 тысяч световых лет. Млечный Путь и Андромеда уже миллионы лет находятся в гравитационном взаимодействии, которое в итоге неизбежно приведет к тому, что галактика Андромеда «подтянет» к себе Млечный Путь и галактики «сольются». Спиральные рукава Млечного Пути будут оторваны, и наше Солнце, вполне возможно, будет «вышвырнуто» в пустоту космоса. Черные дыры в центрах обеих галактик столкнутся и «сольются» воедино.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Астрономы утверждают, что галактическое «слияние» может наступить через 5 млрд. лет. Расчеты учёных показали, что гравитационное притяжение Андромеды сильнее гравитации Млечного Пути, в результате наша Галактика летит к Андромеде со скоростью порядка 120 километров в секунду!

Пространство и время тесно переплетены. Мы не можем заглянуть в космос, не оглядываясь в прошлое. Свет движется очень быстро, но космическое пространство пустынно, а звезды крайне далеки друг от друга. До центра нашей Галактики Млечный Путь свет Солнца идет 30 тысяч лет, а между нашей и ближайшей к ней спиральной галактикой М31 в созвездии Андромеды пролегает 2 миллиона световых лет. Когда М31 испускала наблюдаемый сегодня свет, на Земле еще не было людей. От Земли до самых далеких квазаров8-10 млрд. световых лет. Мы видим их такими, какими они были задолго до того, как сконденсировалась Земля, и даже раньше, чем образовался Млечный Путь.

Созвездия

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Современные технологии пока не подошли к тому, чтобы позволить совершать межзвездные путешествия, по крайней мере, за разумное время. Но можно заложить в компьютер информацию о положении в трехмерном пространстве всех близких к нам звезд и дать ему задание отправиться в небольшое виртуальное путешествие — например, облететь вокруг группы ярких звезд, составляющих ковш. Большой Медведицы, чтобы посмотреть, как при этом будут меняться созвездия.

Вид созвездий заметно преобразился даже за те несколько миллионов лет, в течение которых человек существует как биологический вид. Отправившись в прошлое с помощью компьютера, мы увидим, как звезды ковша приходят в движение, миллион лет назад они образовывали на небе совершенно иной рисунок, который больше напоминал копье.

Символ бесконечности

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

В центральной части Млечного Пути находится газопылевая структура в форме скрученной петли, протяжённость которой составляет около 600 световых лет. Разрозненные фрагменты структуры из газа температурой минус258,15 градусов Цельсия, складываются в восьмёрку — символ бесконечности. Астрономы пока не могут объяснить форму и природу образования данной структуры.

Ещё одна загадка, связанная с «символом бесконечности» — его центр не совпадает с центром Галактики, а немного сдвинут по отношению к нему. Астрономы предполагают, что появление таких структур можно объяснить гравитационным влиянием соседних галактик. Но как это происходит, ученым ещё предстоит разобраться.

Моделируемая Вселенная

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

В настоящее время гипотеза о том, что мы живем не в реальном мире, а в компьютерной симуляции, стала очень популярной. Существует вероятность того, что мы живем не в реальной, а в моделируемой Вселенной. Возможно, Вселенную можно оцифровать в завершенную компьютерную программу? Если Вселенную можно свести к нулям и единицам, то, каково суммарное информационное содержимое Вселенной?

По оценкам квантовых физиков, черная дыра диаметром около сантиметра могла бы содержать 1066 бит информации. В квантовом мире, возможно, саму Вселенную можно «загнать» на компакт-диск! Теоретически, если можно поместить 10100 бит информации на компакт-диск, то мы можем наблюдать за тем, как любое событие нашей Вселенной разворачивается у нас в гостиной.

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Карл Саган высказал в свое время идею существования бесконечной иерархии вселенных, и если бы мы проникнуть внутрь элементарной частицы, такой как электрон, она сама оказалась бы замкнутой вселенной. Знакомая нам Вселенная со всеми галактиками, звездами, планетами и людьми может оказаться одной элементарной частицей во вселенной более высокого уровня.

Вселенной — Космос не имеет ни начала, ни конца, мы находимся посреди бесконечного цикла космических смертей и перерождений. Ни одна из галактик, звезд, планет, цивилизаций, возникших в прошлом «воплощении» Вселенной, не перетекает в нынешнюю реальность.

 

В концепции «множественных миров» Вселенная существует одновременно во множестве параллельных состояний, которые определяются волновой функцией Вселенной.

В Мультивселенной могут существовать и другие вселенные. Существует бесконечное число вселенных — для каждого цикла своя.

Сингулярность

Это то положение, которое существовало до того, как произошёл Большой взрыв и образовалась Вселенная.

Согласно общей теории относительности в центре чёрной дыры находится сингулярность. Это область, где нет времени и не применимы законы физики. Область, где всё сжимается до крошечных размеров под высоким давлением.

В космологии есть три понятия: космологическая сингулярность, гравитационная сингулярность и голая сингулярность.

Космологическая сингулярность

Это состояние Вселенной как до Большого взрыва — когда Вселенная представляла собой пространство, сжатое до крошечных размеров высоким давлением, с очень большой плотностью — так и сам Большой взрыв.

Гравитационная сингулярность

Это место в пространственно-временном континууме, через которое нельзя провести кривую (геодезическую линию), и где не работают законы теории относительности.

В физике, в частности по общей теории относительности, тела, обладающие малым зарядом и массой, движутся по геодезической линии пространственно-временного континуума.

Но в гравитационной сингулярности законы физики не применяются. Поэтому и линии провести невозможно.

Голая сингулярность

Это некая область в пространственно-временном континууме, в которой не действует один из общих принципов в физике — принцип причинности.

Этот принцип формулирует, как происшествия или действия воздействуют друг на друга. То есть согласно ему будущие действия не могут изменять происшествия в прошлом.

Иными словами, наше будущее не воздействует на наше прошлое и не обуславливает его.

По версиям физиков, попав в голую сингулярность, можно увидеть и прошлое, и будущее. Но чтобы туда попасть, нужно попасть в чёрную дыру, что делает опыты по изучению такой сингулярности довольно затруднительными, так как из чёрной дыры нельзя выбраться.

Узнайте больше про Сингулярность.

Теория относительности

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

Альберт Эйнштейн — учёный, физик-теоретик (1879–1955)

Альберт Эйнштейн формулирует в 1905 году специальную теорию относительности и общую теорию относительности в 1915–1916 годах.

Специальная теория относительности

Если два объекта движутся прямолинейно и с постоянной скоростью, то ни один из них не может быть системой отсчёта. Важно определять их движение только относительно друг друга.

Общая теория относительности

Эйнштейн пытался объяснить, откуда берётся гравитация. Согласно его теории крупные тела искажают пространственно-временной континуум. Это приводит к возникновению гравитации.

Читайте подробнее про Теорию относительности.

Хронология достижений современной космологии

Первые шаги к уже современной космологии были сделаны в 1908–1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнару Герцшпрунгу и Харлоу Шепли разработать метод определения расстояний по цефеидам.

В 1916 г. А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.

В 1922–1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

В 1929 г. Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь — лишь небольшая часть окружающей Вселенной. Вместе с этим появляется доказательство для гипотезы Канта: некоторые туманности — галактики, подобные нашей. Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии.

С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.

В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи — вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой.

В 1946–1949 г.г. Г. Гамов, пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» — теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько градусов Кельвина.

В 1964 г. А. Пензиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.

В 1991–1993 г.г. в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения.

В 1998 г. по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением. Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это — тёмной энергии. Появляется современная теория расширения — ΛCDM-модель, включающая в себя как тёмную энергию, так и тёмную материю.

Уравнение Александра Фридмана

Александр Фридман вывел уравнение, которое доказывает, что Вселенная изменяется. Математическим путём учёный доказал, что Вселенная увеличивается и что она точно с чего-то началась.

Позднее его теории были подтверждены с помощью закона Хаббла.

Космология в философии

Что изучает Космология и чем отличается от Астрономии, как нам поможет понять появление вселенной

В 1960 году космология широко рассматривалась как раздел философии, но стала играть намного большую роль как подраздел астрофизики и астрономии.

Философия космологии стремится найти способы познания Вселенной, учитывая, что на данный момент человечеству известна только одна Вселенная, и мы не можем проводить над ней классические эксперименты (сравнение с другими данными — другими Вселенными). Также философия космологии ищет последствия и значения, если таковые имеются.

Читайте также про Теорию струн, Астрономию и Галактику.

Отличия астрономии от космологии

  1. Космология — это наука о Вселенной как едином целом, астрономия же изучает лишь звёздные тела.
  2. Астрономия возникла у древних людей намного раньше, они ориентировались только по звёздам, поклонялись древним богам и т. д.
  3. Космология объединяет знания из астрофизики, физики, философии, геологии, космогонии и астрономии.
  4. В космологии ученые не привязывают свои теории к конкретным планетам, а трактуют их как бы обобщенно.
  5. Астрономия не полагается практически ни на один закон физики, в то время как в основе космологии лежат многие физические утверждения.
  6. Космология, в отличие от астрологии, не относится к строгим наукам. Ряд её предположений не несет никакого практического подтверждения.
  7. Астрономия включает в себя наблюдения за космическими явлениями, в то время как космология находит объяснения для каждого из них.

Однако даже на сегодняшний день многие ученые считают, что космология является частью астрономии и не относят её к отдельным направлениям.

В современной науке сделано много открытий, которые позволяют расширить знания о нашей Вселенной. Некоторые из теорий подтверждены учеными мира экспериментально. Однако остается ещё много задач, которые требует тщательного изучения и материальной базы. Даже сегодня не существует единого мнения, что собой представляет Вселенная, из какого вещества она состоит. Это и является одним из заданий учёных в области не только космологии, но и сопутствующих ей наук. Знания об окружающем нас мире растут в геометрической прогрессии, но наряду с ними появляется все больше дополнительных вопросов. Для космологии это можно считать нормальным путём развития и становления как отдельной науки.