Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Что такое магнитное поле и как оно работает, где пригодиться

Что такое электрическое поле?

В физике под этим понятием принято понимать векторное поле, которое формируется вокруг частиц или тел, обладающих определенным зарядом. Электрическое поле считается одной из двух неотъемлемых составляющих электромагнитного поля.

Чтобы лучше разобраться в природе этого явления, нужно вспомнить, что такое кулоновская сила. Закон Кулона служит для определения степени взаимодействия между каждым из пары точечных электрических зарядов. При этом он учитывает сведения об интервале между ними.

Чтобы разобраться в напряженности явления, стоит обратиться к такому примеру:

  1. Есть 2 тела, которые обладают зарядом. При этом одно из них является неподвижным, а второе – перемещается вокруг первого.
  2. Кулоновская сила в этом случае равняется произведению заряда и напряженности.
  3. Напряженность будет включать параметр центрального заряда и квадрат расстояния от центра до второго тела.

Примечательно, что для каждой точки электрического поля параметр кулоновской силы и направление будут отличаться. В силу разницы направлений в разных точках понятие считается векторным.

Что такое магнитное поле?


Под этим термином в физике понимают силовое поле, которое оказывает влияние исключительно на движущиеся тела, частицы или заряды. Каждый из элементов характеризуется магнитным моментом. Сила в таком случае меньше зависит от движения заряда. В качестве заряженных частиц в этом случае выступают электроны. Что касается напряженности этого вида поля, величина будет находиться в прямой пропорции от скорости заряда и его параметров.

В качестве лучшего примера стоит привести планету Земля. Ее центральная часть состоит из раскаленного железа. Как и другие металлические объекты, он может перемещать по себе электроны. Именно поэтому наибольшее магнитное поле на Земле формируется самой планетой, или ее центром, если сказать точнее. Если это поле исчезнет, высока вероятность катастроф и даже гибели живых организмов.

Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» В качестве более стандартного примера такого понятия стоит привести электромагниты. Они, как правило, включают провода, которые обмотаны вокруг ферромагнетиков. Эти элементы представляют собой ряд веществ, которые приобретают магнитные характеристики лишь в том случае, если их температура ниже конкретного уровня. Последний параметр называют в физике температурой Кюре. По сути, ферромагнетики считаются уникальными элементами. Они вступают во взаимодействие с магнитным полем, но при этом не несут движущихся зарядов.

Что такое магнитное поле и как оно работает, где пригодиться

 

В чем разница между электрическим полем и магнитным полем?

Оба рассматриваемых понятия считаются силовыми. Это означает, что в каждой точке пространства, в которой действует поле, на заряд влияет конкретная сила. В другой точке ее значение будет отличаться. Электромагнитное поле оказывает воздействие на заряженные тела и частицы. При этом оно действует на все заряды, тогда как магнитное поле – исключительно на движущиеся.

Существуют вещества, которые взаимодействуют с магнитным полем, но не включают движущиеся заряды. К ним, в частности, относятся ферромагнетики. Этим понятие отличается от электрического поля, поскольку аналогичных веществ для него не существует. У магнитов, естественных или намагниченных тел существует 2 полюса. Их называют южным и северным.

Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Обычные электрические заряды считаются сравнительно однородными. Они не включают полюсов. При этом для таких зарядов характерно 2 типа – положительные и отрицательные. Знак оказывает воздействие на направление кулоновской силы. Как следствие, это влияет на взаимодействие двух заряженных частиц. Знак не будет оказывать влияния на взаимодействие других заряженных частиц с магнитным полем. Он только поменяет местами полюса.

Отличается и графическое изображение рассматриваемых физических явлений. Линии напряженности электрического поля обладают началом и концом. Их можно визуализировать. В качестве примера стоит привести кристаллы хинина в масле. Линии индукции замкнуты. Их тоже можно визуализировать. Примером этого служат металлические опилки.

Отдельно стоит упомянуть электромагнитное поле, которое обладает характеристиками как электрического, так и магнитного поля. Это означает, что оно способно в определенных условиях поворачивать стрелку компаса и перемещать электрически заряженные частицы. Обе составляющие имеют тесную взаимосвязь друг с другом. Каждая из них отличается своим энергетическим запасом. Именно он влияет на энергию всего электромагнитного поля.

Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Возникновение электромагнитного поля возможно при любом, даже небольшом изменении тока в проводниках. При этом оно оказывает влияние на прилегающие зоны пространства, передает им собственную энергию. В результате в этих местах тоже появляется электромагнитное поле.Что такое магнитное поле и как оно работает, где пригодиться

Что такое магнитное поле, его свойства

Многие видели и держали в руках магниты. Легко заметить ту силу, которая возникает между ними.

Каждый магнит обладает двумя полюсами: противоположные притягиваются, а одинаковые отталкиваются. Кроме того, магниты всегда окружены областью, где эта сила возникает. Магнитные поля как раз и описывают такую силу.

Таким образом, магнитное поле — это концепция, которую используют, чтобы описать то, как сила распределяется в пространстве вокруг магнита и в нем самом. Впервые на это явление обратил внимание французский ученый Перегрин, а затем исследовали Ампер и Фарадей.

Явление магнетизма и магнитных полей — одна из составляющих электромагнитных сил, которые для природы базовые. Появляется магнитное поле там, где происходит движение зарядов. Когда большие заряды двигаются с высокими скоростями, то сила магнитного поля возрастает.

Что такое магнитное поле и как оно работает, где пригодиться

Магнитное поле вокруг магнита

Какова природа магнитного поля? Существуют способы, которые организовывают движение зарядов так, чтобы они такое поле порождали. Например:

  • Можно пустить ток по проводнику, присоединенному к батарее. Если силу тока увеличивать (то есть наращивать количество движущихся зарядов), то пропорционально усилится и магнитное поле. Его сила будет уменьшаться пропорционально расстоянию от проводника. Данное явление называют закон Ампера.
  • Можно использовать свойства электронов. Они имеют отрицательный заряд и совершают движение вокруг ядра атомов, что и есть основой принципа работы постоянного магнита. Не все материалы получится намагнитить. Для этого необходимы один или несколько так называемых непарных электронов (обычно электроны всегда образуют пары). Например, у атома железа есть четыре непарных электрона, поэтому из такого материала получится хороший магнит.

Каждый кусочек любого материала состоит из миллиардов атомов. Когда они ориентируются в пространстве произвольно, то их поле угасает, даже при наличии непарных электронов. Только в стабильных веществах можно получить постоянную ориентацию электронов, то есть постоянный магнит или ферромагнетик.

Некоторым материалам для этой цели необходим внешний источник магнитного поля. Оно способно сориентировать вращение электронов и задать им нужное направление, но стоит исчезнуть внешнему полю, и общая ориентация тоже пропадет. Такие материалы получили название парамагнетиков.

Хороший пример парамагнетика — металлическая дверца холодильников. Сама по себе она не магнит, но может притягивать приложенные к ней магниты. Это свойство многие используют, когда с помощью магнита крепят к дверце холодильника список покупок или записку.

Экспериментально подтвержденные свойства магнитного поля таковы:

  • оно материальное, то есть существует в объективной реальности, даже если о нем не знаем;
  • его порождают лишь движущиеся электрические заряды, то есть любое движущееся заряженное тело окружено таким полем. Магнитные поля создаются и магнитами, но и в этом случае причина появления кроется в движении электронов. Переменные электрические поля также создают их;
  • обнаруживают данные поля, действуя некоторой силой на движущиеся электрические заряды или проводники с током;
  • в пространстве его распространение происходит со скоростью, которая равна скорости света в условиях вакуума.

Таким образом, магнитное поле, определение которому дали выше, — это явление загадочное и невидимое, но в то же время вполне объяснимое.

В чём измеряется магнитное поле?

Магнитное поле является векторной величиной и для его измерения/определения нужно знать его направление и силу.

Для определения направления можно положить рядом с магнитным предметом магнитный компас. Таким образом, стрелка компаса остановится вдоль силовой линии.

Сила магнитного поля измеряется:

1. Либо в СИ в единицах Тесла (Тл) или микротесла (мкТл)

2. Либо в единицах Гаусс (Гс) или миллигаусс (мГс), до сих пор используется экспериментально.

Где:

  • 1 Тл = 10 000 Гс
  • 1 Гс = Тл
  • 1 мГс = 0,1 мкТл

Как создаётся магнитное поле?

Магнитные поля создаются движущимися электрически заряженными частицами, т.е. поле появляется там, где движутся электрические заряды. Например, пропуская электрический ток по проводнику.

Другой способ — комбинировать собственные магнитные поля электронов, что случается в некоторых материалах. Их называют постоянными магнитами (например, магнитики на наших холодильниках).

Если очень больший заряд будет двигаться с ещё большей скоростью, то и сила его магнитного поля тоже возрастёт.

Характеристики магнитного поля

Основные характеристики:

  • магнитная индукция
  • магнитный поток
  • магнитная проницаемость

Магнитная индукция (B)

Это интенсивность магнитного поля. Чем сильнее магнит или электромагнит создаёт магнитное поле, тем больше индукция.

Формула: B = Ф / S.cos ()

Где:

  • B — магнитная индукция (в Тл — Тесла)
  • Ф — магнитный поток (в Вб — вебер)
  • S — площадь поверхности (в м²)
  • cos — угол (образованный угол между линиями B с вектором n, перпендикулярен плоскости S)

Магнитный поток (Ф)

Магнитная индукция (B) проходит через определённую поверхность (с площадью S), и индукция внутри неё будет значиться как магнитный поток (Ф). Формула: Ф = BS.

Это общее число магнитных силовых линий, которые пронизывают определённую ограниченную поверхность.

Магнитная проницаемость

Ещё магнитная индукция зависит и от среды, где создано магнитное поле. Эту величину характеризует магнитная проницаемость. Среда с большей магнитной проницаемостью создаст магнитное поле с большей индукцией.

Распространение магнитного поля

Что такое магнитное поле и как оно работает, где пригодиться

Магнитным полем называют одну из форм проявления электромагнетизма: поле, оказывающее воздействие на заряды, которые перемещаются, а также на намагниченные тела в разных состояниях.

Магнитное поле создают источники в виде:

  • проводников, по которым протекает электрический ток;
  • зарядов и заряженных тел, находящихся в движении;
  • тел, которые намагничены;
  • переменных электрических тел.

Интенсивность магнитного поля определяют с помощью магнитной индукцией. Эта величина соответствует приложенной силе, с которой она оказывает воздействие на проводник длиной один метр с протекающим по нему током в 1 А. Единица измерения магнитной индукции является 1 Тл (тесла).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В формуле:

  • F – является наибольшей силой, которая оказывает действие на проводник;
  • L – представляет собой длину проводника;
  • I – определяет силу тока заряженных частиц в металле.

Эмпирический способ нахождения скорости электромагнитных волн

Скорость, с которой распространяются электромагнитные волны, можно определить эмпирическим методом. При этом изучают неподвижные волны, полученные в цепи. К примеру, такую картину можно наблюдать, когда выход генератора подсоединен к проводам линии через конденсаторы. Во время работы генератора между проводами возникают колебания напряжения, что свидетельствует о наличии колебаний электрического поля. Таким образом образуется электромагнитная волна.

Понять интенсивность колебаний в разных точках линии можно, если включить лампы накаливания. Благодаря подобному опыту, удается выяснить, что возникновение стоячих волн в линии обусловлено определенной частотой генератора, совпадающей с частотой собственных колебаний линий.

Проводя измерения расстояния (△x), на которое удалены соседние узлы в стоячей волне, можно сделать вывод о том, что данная величина равна 1/2 длины волны (λ). Если измерить ν, то есть частоту колебаний генератора, то можно определить скорость распространения электромагнитной волны по формуле:

V = λ * v

Опыт Эрстеда

Самое главное экспериментальное доказательство того, что магнитное поле возникает из-за движения зарядов — это опыт Эрстеда. В1820 году Эр­стед опыт­ным пу­тём свя­зал элек­три­че­ст­во и маг­не­тизм с по­мо­щью экс­пе­ри­мен­та с от­кло­не­ни­ем стрел­ки ком­па­са.

Это явление использовали, когда создавали первые ам­пер­мет­ры, так как от­кло­не­ние стрел­ки про­пор­цио­наль­но ве­ли­чи­не то­ка. Оно ле­жит в ос­но­ве лю­бо­го элек­тро­маг­ни­та.

А вот и видео эксперимента:

Что такое однородное и неоднородное магнитное поле

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

В однородном магнитном поле заряженная частица, движущаяся со скоростью \( \overrightarrow v\) перпендикулярно линиям индукции, подвергается воздействию силы \(\overrightarrow{F_л}\), постоянной по модулю и направленной перпендикулярно вектору скорости \(\overrightarrow v\). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.

Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:

\(F=qE+q\left[vB\right]\)

Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.

Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.

Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.

В однородном магнитном поле максимальный вращающий момент \(M_{max}\) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:

  1. Он пропорционален силе тока в контуре I.
  2. Пропорционален площади контура.
  3. Для контуров с одинаковой площадью не зависит от их формы.

Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту \(P_{m}\) контура с током:

\(P_m=I\ast S.\)

Величина магнитного момента \(P_{m}\) характеризует действие магнитного поля на плоский контур с током.

В данном случае значение вращающего момента \(M_{max}\), действующего на контур с магнитным моментом \(P_{m}\), принимают равным единице.

Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:

\(B=\frac{M_{max}}{P_m}.\)

Примеры однородных магнитных полей:

  1. Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
  2. Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора \(\overrightarrow B\) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.

Примеры неоднородных магнитных полей:

  1. Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
  2. Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.

Отличия однородного и неоднородного магнитных полей

  1. Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
  2. В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
  3. Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
  4. Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.

Что такое силовые линии, как расположены

Что такое магнитное поле и как оно работает, где пригодиться

Силовые линии магнитного поля или линии магнитной индукции — линии, касательные к которым в каждой точке имеют направление вектора индукции в этой точке. Данные линии аналогичны линиям вектора напряженности электростатического поля.

Если представить, что в некой точке магнитного поля находится маленькая магнитная стрелка, то под его действием она расположится по направлению касательной к линии поля в этой точке. Северный конец стрелки укажет направление линии магнитного поля.

Примечание: Линии магнитной индукции всегда не имеют ни начала, ни конца, то есть они всегда замкнуты. Магнитные линии соответствуют направлению вектора в каждой точки поля. Направления вектора указываются стрелками.

Поля с замкнутыми векторными линиями называют вихревыми.

В однородном магнитном поле все линии параллельны и равны друг другу.

В прямом проводнике линии магнитной индукции расположены в виде окружностей, лежащих в плоскостях, перпендикулярных проводнику. Центры окружностей находятся на оси проводника.

Для того чтобы определить вектор индукции в этом случае, необходимо смотреть вдоль проводника по направлению движения положительных зарядов, то есть по направлению тока. Вектор магнитной индукции будет направлен по ходу часовой стрелки. Если ток направлен к наблюдателю, то вектор индукции направлен против хода часовой стрелки.

Способы обнаружения магнитного поля

Схема опыта для обнаружения магнитного поля:

  1. Закрепить параллельно и вертикально два гибких проводника. Для опыта можно взять проводники, состоящие из проволоки различной толщины и изготовленных из разных видов метала. Можно применить стальную, медную, алюминиевую, нихромовую проволоку.
  2. Присоединить полюса источников тока к их нижним концам. Проводники при этом не должны отталкиваться или приближаться друг к другу, поскольку кулоновские силы не проявляются при незначительной разности потенциалов зарядов проводников.
  3. Необходимо соединить проводники так, чтобы по ним пошел электрический ток.
  4. В первом варианте необходимо замкнуть концы проводников для возникновения в них токов противоположного направления. Проводники должны отталкиваться друг от друга.
  5. Во втором варианте необходимо замкнуть концы проводников для создания токов одного направления. Они должны притягиваться друг к другу.

Опыт позволяет обнаружить магнитное взаимодействие, то есть взаимодействие между электрическими зарядами, движущимися направленно.

Магнитное поле можно обнаружить по действию на электрический ток, то есть по действию на движущиеся заряды.

Опыт для определения характера действия магнитного поля на контур с током:

  1. Подвесить маленькую плоскую рамку, состоящую из нескольких витков проволоки, на сплетенные друг с другом тонкие гибкие проводники.
  2. Расположить вертикально провод на значительно большем расстоянии, чем размеры рамки.
  3. Рамку необходимо расположить так, чтобы при пропускании электрического тока через нее провод оказался в плоскости рамки.
  4. При изменении направления тока рамка должна поворачиваться на 180⁰.

Опыт показывает, что магнитное поле создается не только токами в проводниках, но так же его создает и любое направленное движение электрических зарядов.

Магнитное поле можно обнаружить по отклонению рядом находящейся магнитной стрелки на компасе, при пропускании через проводник электрического тока.

Магнитное поле также создается постоянными магнитами. Для его обнаружения необходимо на гибких проводниках подвесить между полюсами магнита плоскую рамку с током. Рамка должна поворачиваться до тех пор, пока ее плоскость не станет перпендикулярной линии, соединяющей полюсы магнита. Опыты позволяют увидеть ориентирующее действие магнитного поля на рамку с током.

Закон электромагнитной индукции

Электромагнитная индукция — очень сложная штука. Поэтому будем разбираться в ней на обручах и бабулях.

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Что такое магнитное поле и как оно работает, где пригодиться
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Что такое магнитное поле и как оно работает, где пригодиться
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Что такое магнитное поле и как оно работает, где пригодиться
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Что такое магнитное поле и как оно работает, где пригодиться

Магнитный поток

Что такое магнитное поле и как оно работает, где пригодиться
Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Что такое магнитное поле и как оно работает, где пригодиться
Вот, что показали эти опыты:

    1. Индукционный ток возникает только при изменении линий магнитной индукции.
    1. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  1. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Что такое магнитное поле и как оно работает, где пригодиться
Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Что такое магнитное поле и как оно работает, где пригодиться
Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Что такое магнитное поле и как оно работает, где пригодиться
Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Что такое магнитное поле и как оно работает, где пригодиться
Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Что такое магнитное поле и как оно работает, где пригодиться
Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.